Основы теории непустого эфира
<< Предыдущая часть

3. Общие свойства эфира (вакуума)

Современными исследователями физическая, однородная континуальная среда (газ, жидкость, твердое тело) понимается как материя, равномерно и трехмерно заполняющая пространство, которая обладает способностью передавать возмущения с постоянной скоростью. Свойства среды определяют скорость распространения возмущений в ней. Известны континуальные среды, обладающие принципиально разными способами передачи возмущений. Одна из них отличается тем, что возмущения передаются по линии, совпадающей с направлением распространения. Другой тип среды способен передавать возмущения с вектором смещения в направлении распространения и с вектором смещения, ориентированном по нормали к направлению распространения. Имеется третий тип среды, в которой смещения происходят во взаимноортогональных друг другу и к направлению распространения ориентациях. Первая среда представляет собой газ (жидкость), вторая - твердое тело. Свойства среды третьего типа - эфира (вакуума) пока еще не совсем определены. Известно, что эфир характеризуется физическими постоянными: скоростью распространения колебаний, диэлектрической постоянной, магнитной проницаемостью.

Выполненные после Д.Максвелла исследования процессов излучения, распространения и приема электромагнитных волн показало, что эфир обладает определенной величиной волнового сопротивления Z ~ 377 ом [3]. Наблюдения за процессом заряда вакуумированного конденсатора, подачи тока в соленоид, позволяют заключить, что электромагнитные процессы в эфире обладают инерцией. Установленные факты и явления позволяют утверждать, что эфир является специфической средой, принципиально отличающейся от жидких и твердых сред.

Одной из самых примечательных свойств эфира является то, что он не оказывает сопротивления равномерному движению. Например, в материальных (обладающих плотностью) средах элементарные частицы (электроны и др.) постоянно находятся во взаимном движении. Стабильное состояние макрообьектов, их фиксированное взаимное положение, могут сохраняться чрезвычайно долго. Например, установленный возраст некоторых земных пород и метеоритов составляет (3.8-4.7)109 лет [11]. Все это время движение, например, электронов вокруг атомов, составляющих кристаллическую решетку минералов в этих породах и метеоритах, происходит без изменения их орбит, замедления скорости их обращения вокруг ядер атомов. Из результатов исследований астрономов нам также известно, что свет от самых отдаленных галактик приходит к нам за время, оцениваемое в миллионы световых лет. При сколько-нибудь заметном поглощении света эфиром мы не смогли бы наблюдать эти далекие галактики.

Наиболее полные даннные о свойствах эфира дают наблюдения о распространении в нем электромагнитных волн и света. Как известно электромагнитная волна представляет собой периодическое изменение в пространстве и времени электрического и магнитного полей, распространяющееся в виде волновых пакетов во все стороны от той области пространства, где возникают колебания [3]. Бегущая в пространстве электромагнитная волна описывается взаимноперпендикулярными векторами напряженности электрического Е и магнитного Н полей. Величины векторов Е и Н изменяются синхронно и перпендикулярно направлению распространения волны. Перпендикулярность векторов напряженности Е, Н и направления распространения обусловливают "поперечность" электромагнитной волны. Векторы Е и Н, оставаясь взаимноперпендикулярными, могут быть, в плоскости нормальной к направлению распространения, ориентированы произвольно. Имеется также очень важное свойство электромагнитных волн - их поляризуемость. Свет, являющийся электромагнитной волной, легко проявляет свойства - "поперечность" и поляризуемость. Свет может иметь линейную, эллиптическую и круговую поляризации [12]. В первых двух случаях можно выделить направленность векторов Е и Н. При круговой поляризации зафиксировать направление векторов нельзя. Имеется также хаотично поляризованный (естественный) свет. Физическая среда может изменять степень поляризации света. Например, из хаотично поляризованного выделять линейно-поляризованный, а также изменять вид поляризации света, - из линейной в эллиптическую, круговую и т. д. При распространении света в жидких и твердых средах возникает еще ряд эффектов, основными из которых являются плеохроизм (дихроизм) и проявление оптической активности (вращение плоскости поляризации) [13, 14].

Причина плеохроизма заключается в анизотропии поглощения света, а именно поглощается такая компонента света, вектор поляризации которой ориентирован перпендикулярно вытянутым структурным элементам среды. В настоящее время разработано много типов поляризаторов естественного света, работающих с использованием эффекта плеохроизма [15]. Оптической активностью обладают минералы и вещества, построенные из диссиметричных молекул, не имеющих ни центра, ни плоскости симметрии. Применение поляризованного света для изучения веществ имеет давнюю историю, причем наиболее интенсивно он начал использоваться после введения Уильямом Николем в 1828 г. поляризаторов в микроскоп.

Явления, аналогичные поляризационным при распространении света, наблюдаются в твердых телах при распространении упругих поперечных (сдвиговых) колебаний. Вектор их поляризации направлен по нормали (в общем случае) к направлению распространения, аналогично векторам Е и Н в электромагнитных волнах. Изучение законов распространения поляризованных упругих волн помогает выявить аналогии и особенности распространения электромагнитных колебаний.

Для изучения особенностей распространения сдвиговых колебаний в твердом теле нами разработан новый метод, названный акустополяризационным [16]. Метод предназначен для обнаружения упругой анизотропии, определения числа и пространственной направленности элементов симметрии, типа симметрии и величин констант упругости. Метод апробирован на средах поперечно-изотропной, ромбической и других типов симметрий. Принципиальная схема наблюдений, осуществляемых по этому методу, не отличается от схемы, применяемой при поляризационных наблюдениях в оптике [17].

Акустополяризационные измерения осуществляются специально разработанным прибором, получившим название акустополярископ, рис.1 [16].


Рис. 1. Конструкция акустополярископа с поворотной платформой. 1 - основание; 2 - стойка; 3 - кронштейн; 4 - подвижный шток; 5 - преобразователи; 6 - образец; 7 - поворотная платформа; 8 - дополнительный кронштейн; 9 - шкала углов; 10 - указатель.

Наблюдения проводятся при помощи преобразователей сдвиговых колебаний. Метод акустополяризационных наблюдений осуществляют при помощи излучателей и приемников (преобразователей) линейно-поляризованных чисто поперечных колебаний. Перед первым этапом измерений плоскости поляризации преобразователей совмещают (положение ВП). Образец устанавливают между преобразователями. В процессе измерений образец поворачивают в пределах угла 3600, при этом измеряется амплитуда сигнала на экране регистрирующего прибора. Перед вторым этапом измерений плоскость поляризации преобразователей скрещивают под углом 900 (положение ВС). Второй этап измерений также проводят в пределах полного угла поворота образца. В результате измерений получают акустополяриграммы - нормированные круговые диаграммы амплитуды прошедшего через образец ультразвукового импульса. Акустополяриграмма, полученная при параллельных (ВП) векторах поляризации, позволяет судить, например, о наличии эффекта линейной акустической анизотропии поглощения [18] и, соответственно, о преимущественной ориентировке структурных элементов. Акустополяриграмма, полученная при положении ВС, позволяет сделать заключение о наличии и числе элементов симметрии в данном сечении образца, их ориентации в пространстве с точностью до 1-30.

На рис.2 приведены экспериментальные акустополяриграммы различных материалов, иллюстрирующие особенности распространения в них сдвиговых колебаний.

Кубический образец С-t-5 изготовлен из блока силикатного стекла. Он представляет собой практически изотропную среду (скорость продольной волны - 5.77 км/с, сдвиговой - 3.41 км/с). Об этом свидетельствуют три пары акустополяриграмм, полученные в направлениях 1-1', 2-2' и 3-3' по трем граням образца (рис.2а). Акустополяриграммы ВП по форме близки к правильной окружности. Акустополяриграммы ВС малы по размеру и не имеют четко выраженных максимумов.

Довольно интересные формы имеют акустополяриграммы образца обыкновенного дерева (рис.2b). Акустополяриграммы ВП, полученные на всех трех парах граней кубического образца, резко отличаются от теоретически рассчитанных. Анализ показывает, что амплитуда сдвиговых колебаний при векторе поляризации, направленном по нормали к волокнам дерева, в 2-5 раз меньше, чем при ориентации вектора вдоль волокон. Таким образом, при векторе поляризации поперечной волны, направленной поперек волокон, происходит интенсивное поглощение энергии колебаний. Аналогичное свойство различным образом поглощать колебания, названное плеохроизмом (дихроизмом), наблюдается при прохождении поляризованного света через некоторые минералы, такие как турмалин, кунцит, кордиерит и др. [13].


Рис. 2. Акустополяриграммы кубических образцов силикатного стекла (а), дерева (b), монокристалла микроклина (c), синтетического кварца (d) в трех взаимноперпендикулярных направлениях 1-1', 2-2', 3-3'. Сплошная линия - векторы параллельны, пунктир - векторы скрещены.

Названное эффектом линейной акустической анизотропии поглощения сдвиговых колебаний (ЛААП), данное свойство довольно часто наблюдается в текстурированных горных породах [16]. В дереве ЛААП сопровождается, как следует из формы акустополяриграмм ВС (рис. 2b), упругой анизотропией. Один из элементов упругой симметрии направлен вдоль оси кольцевой структуры дерева, а другой - по нормали к ней.

Еще более значительное проявление линейной анизотропии поглощения наблюдается в минеральном образце микроклина, рис. 2с. Кубический образец микроклина был вырезан таким образом, что его кристаллографическая ось [001] совпадает с нормалью 1-1' к грани (1), а ось [010] - с нормалью 2-2' к грани (2). Полученнные при скрещенных векторах поляризации акустополяриграммы ВС показывают, что элементы упругой симметрии минерала практически перпендикулярны к граням образца. Показатели эффекта линейной анизотропии поглощения для первой и третьей пары граней очень велики и, соответственно, составляют Д1 = 0.90, Д3 = 0.93. Наиболее естественное обьяснение проявления ЛААП в образце микроклина состоит в том, что этот минерал обладает совершенной спайностью в двух направлениях. Плоскости спайности образуют плоско-параллельные пространственные решетки, на которых и происходит поглощение (рассеяние) колебаний.

Акустополяриграммы в направлении 1-1' (рис.2d) получены на кубическом образце монокристалла синтетического кварца (тригональная сингония). В том же направлении проходит поворотная ось [0001] третьего порядка. Соответственно, на акустополяриграмме ВС выделяются 6 минимумов, следующих друг за другом с шагом примерно 600, - по два минимума на каждую плоскость симметрии. Акустополяриграмма ВП состоит из трех лепестков. Акустополяриграмы, полученные в направлениях 2-2' и 3-3', показывают на наличие двух элементов симметрии. Рисунок 2d показывает, что метод акустополярископии может служить для изучения волновых процессов в средах низких систем симметрии: триклинной, моноклинной и др.

Описанные примеры иллюстрируют некоторые особенности распространения сдвиговых колебаний в сложных средах. Они подтверждают наличие, при распространении сдвиговых колебаний в анизотропных средах, всех трех форм поляризации, - линейной, эллиптической и круговой.

Результаты анализа большого числа акустополяриграмм твердых сред, в основном, минералов и горных пород, известные данные из практики оптических поляризационных наблюдений [12-19], позволяют провести первичную классификацию общих и различающихся явлений, сопровождающих распространение поляризованных электромагнитных и акустических колебаний. Общими признаками, описание которых во многих случаях математически адекватно для двух видов излучения, распространяющихся в анизотропных средах, обладают:

  • явление двулучепреломления для электромагнитных и аналогичное явление для акустических;
  • явление плеохроизма (дихроизма) для электромагнитных и эффект линейной акустической анизотропии поглощения (акустический плеохроизм) для акустических;
  • оптическая активность (электромагнитные колебания) и вращение вектора поляризации (акустические колебания);
  • увеличение степени эллиптичности поляризованных колебаний по мере их распространения в случайно-неоднородной среде [13, 19].

Однако для каждого из этих видов характерны следующие особенности:

  • электромагнитные колебания обладают дисперсией (волны разной длины распространяются в материальных средах с различной скоростью), при распространении акустических колебаний дисперсия проявляется в значительно меньшей мере [20, 21];
  • свойства, например, диэлектрическая проницаемость, определяющие волновую поверхность электромагнитных колебаний для самой низкосимметричной среды описываются тензором второго ранга (6 компонент), однако свойства упругости, определяющие поверхность акустических колебаний самой низкосимметричной среды описываются тензором четвертого ранга (21 константа) [22];
  • число и пространственное положение элементов симметрии среды при зондировании колебаниями обоего вида часто не совпадают, число элементов упругой симметрии, как правило, больше;
  • имеется класс гетерогенных сред (минералы, горные породы, текстурированные материалы), где эффект линейной акустической анизотропии поглощения регистрируется очень часто [16], оптический плеохроизм (дихроизм) в природных средах представлен гораздо реже [13];
  • имеется класс сред, где сильно проявляется оптическая активность [20], при распространении акустических колебаний эффект вращения вектора поляризации пока зафиксирован лишь при очень высокой частоте колебаний [23];
  • некоторые жидкие при обычных температурах и давлениях среды являются хорошими проводниками сдвиговых колебаний на высоких частотах (0.5-1.0 МГц и выше) [16].

Таким образом, при распространении электромагнитных, световых и упругих сдвиговых волн наблюдается много сходных и близких явлений, показывающих существование общих элементов в структуре как твердого тела, так и вакуума.

Приведенный перечень общих и различающихся явлений и признаков взаимодействия со средами электромагнитных и акустических колебаний не является полным.

Дополнительно рассмотрим выражения для коэффициентов отражения и прохождения прошедшей и отраженной плоской однородной волны света, падающей на плоскую поверхность, разделяющую две, различающиеся по оптическим свойствам, среды [20]. Для компоненты волны, вектор поляризации которой лежит в плоскости раздела сред, коэффициент прохождения равен:

(1)

где Тр - амплитуда волны, прошедшей во вторую среду; Ар - амплитуда волны, падающей на границу раздела сред; n1 - коэффициент преломления в первой среде, n1 = C/V1; n2 - коэффициент преломления во второй среде, n2 = C/V2; С - скорость распространения света в эфире; V1 - скорость распространения света в первой среде; V2 - скорость распространения света во второй среде; q i - угол падения луча волны в первой среде; q t - угол падения луча волны во второй среде.

Для отраженной волны соотвествующий коэффициент равен:

(2)

где Tt - амплитуда отраженной волны.

Теперь рассмотрим уравнения отражения и прохождения для акустической поперечной однородной, плоско-поляризованной волны с плоским фронтом, падающей также на плоскую границу раздела двух различающихся по акустическим свойствам твердых сред. Согласно работе [24] для волны с вектором поляризации, лежащим в плоскости раздела сред (поляризация SH), коэффициенты прохождения и отражения имеют вид:

,

(3)

,

(4)

где ASH2 - соответственно амплитуда прошедшей, ASH1 - амплитуда отраженной; ASH - амплитуда падающей волны; Р = (VS12/VS22) - отношение квадратов скорости распространения поперечной волны в первой среде VS1 к скорости распространения волны такого же рода во второй среде VS2; h = sin2b, где b - угол падения луча поперечных колебаний в первой среде; H = r 2/r 1 - отношение значений плотности r2 во второй среде к плотности r1 в первой.

Используя уравнение Снеллиуса sinq i / V1 = sinq t / V2 , а также выражения q = sin2q i, F = n22 / n12 = V12 / V22, уравнения (1) и (2) можно привести к виду, подобному виду уравнений (3), (4):

,

(5)

,

(6)

Анализируя совместно уравнения (3), (4) и (5), (6) можно заметить их весьма близкую структуру. За исключением параметра H = r2 / r1 (отношения значений плотности r2 во второй твердой среде к плотности r1 в первой), эти пары уравнений эквивалентны. Параметр Н в уравнениях (5), (6) отражения-прохождения света на границе раздела оптически различающихся сред отсуствует. Из этого следует вывод, что эфир и оптически прозрачные тела (газы, жидкости, твердые тела) не различаются для электромагнитных волн по параметру плотности, а только по скорости распространия в них колебаний. Иначе, эфир не обладает плотностью или массой, той, которой обладают физические тела. Эфир является основой распространения электромагнитных волн и внутри физических сред. Как известно, скорость распространения света в газах, жидкостях, твердых телах всегда ниже, чем в вакууме [2].

На основании этого, можно предположить, что в физических, ощущаемых (обнаруживаемых физическими приборами) средах при огибании атомных структур фотонам необходимо преодолевать дополнительное расстояние, уменьшающее скорость распространения колебаний.

Заметим также, что в отношении законов отражения-преломления света на границе раздела сред соблюдается полный баланс энергии, исключающий возможность каких-либо дополнительных "продольных" световых волн [20]. Перечень других явлений и эффектов, включающих пьезо- и термоэлектричество, взаимные электроупругие эффекты описаны в работах [22, 25, 26].

Суммируя изложенные результаты, к общим свойствам эфира (вакуума) следует отнести:

  • способность переносить возмущения только с вектором смещения, направленном по нормали к направлению распространения;
  • способность проникать во все физические тела, обладая при этом качествами сверхтекучей среды;
  • не обладать плотностью в том смысле, в каком физические тела обладают ею;
  • способность поддерживать распространение колебаний без их затухания по крайней мере на расстояниях, сравнимых с астрономическими;
  • способность к ортогональной генерации смещений при дуальных преобразованиях, например, электрического поля в магнитное и наоборот;
  • проявлять силы инерции, например, при переходе электрического поля в магнитное и наоборот.

Всем перечисленным и известным свойствам, концепциям Ньютона, МакКеллога, Д.Максвелла, У.Томсона, в наибольшей степени отвечает следующая модель эфира.

  1. Эфир, называемый далее эфирной средой, состоит из частиц двух, противоположных по знаку, видов. Противоположные по знаку частицы притягиваются друг к другу, образуя однородное пространство, в котором, в невозмущенном состоянии, каждая из частиц соседствует с противоположной по знаку частицей. Разноименные по знаку частицы притягиваются друг к другу с большой силой.
  2. Противоположные по знаку частицы, составляющие эфирную среду, перемещаются друг относительно друга совершенно без трения. Эфирная среда, состоящая из этих частиц, является средой особого рода. В ней могут бесконечно долго существовать линейные, круговые и иные движения физических тел, сдвиговые деформации и т.д. Эта среда не обладает плотностью в обычном понимании. Она обладает определенными электромагнитными свойствами.
  3. Любая физическая, обладающая массой (плотностью), субстанция (вещества, молекулы, атомы) проницаема для эфирной среды. Любая физическая субстанция может продвигаться в эфирной среде совершенно без трения.
  4. Силы инерции возникают при взаимодействии любой физической субстанции с эфирной средой только при ускорении или замедлении движения. Равномерное движение локального физического тела деформирует эфирную среду, изменяя расстояние между разноименными по заряду, сцепленными с большой силой частицами эфирной среды, которые снова смыкаются после его прохождения.
  5. Ускорение локального физического тела создает инерциальные возмущения в эфирной среде тем большие, чем больше ускорение тела. Чем больше масса и ускорение физического тела, тем большие инерциальные возмущения оно вызывает.
  6. Эфирная среда, в известной степени, связана (закреплена) большими, по астрономическим масштабам, физическими массами (например, галактиками), так как их наличие и движение в наибольшей степени приводит к деформации эфирной среды.
  7. Колебания, распространяющиеся в эфирной среде, представляют собой разные формы сдвиговых деформаций, в которых смещения частиц эфирной среды происходит в направлении, перпендикулярном направлению распространения.

Перечисленные положения требуют дополнительных обоснований и, вместе с тем, позволяют составить физически адекватную модель структуры эфирной среды. Ниже нами представлены обоснования сформулированных положений.

<< Предыдущая часть
Copyright (c) 2000 Горбацевич Феликс Феликсович